توسعه مدل فازی- عصبی تطبیقی به‌منظور پیش‌بینی دبی بیشینه روزانه سیلاب با استفاده از بارش تراکمی پنج روزه

Authors

  • الهام فیروزنیا دانش‌آموخته کارشناسی ارشد گروه آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد علوم تحقیقات تهران، ایران
  • سعید سلطانی دانشیار گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران
  • شهاب عراقی نژاد استادیار گروه آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی کرج، دانشگاه تهران، تهران، ایران
  • محمد مهدوی استاد گروه آبخیزداری، دانشکده کشاورزی و منابع طبیعی کرج، دانشگاه تهران، تهران، ایران
Abstract:

در فرایند بارش رواناب، عوامل بسیاری دخالت دارند که با عدم قطعیت همراه هستند. یکی از فاکتورهای بسیار مهم در این فرایند، رطوبت اشباع پیشین خاک است. یکی از روش‌هایی که به این پارامتر توجه دارد، روش ارائه شده توسط سازمان حفاظت خاک آمریکا به نام شماره منحنی است. در این روش، مجموع بارش‌های پنج روز پیش از رخداد دبی اوج سیل، به‌عنوان نماینده شرایط رطوبتی پیشین خاک در نظر گرفته می‌شود. با توجه به این که پدیده‌های طبیعی به‌دلیل دخالت تعداد زیادی از عوامل و پارامترها با عدم قطعیت همراه هستند، یکی از ابزارهای کارآمد در بررسی رفتار این پدیده‌ها، مدل‌های هوشمند فازی- عصبی تطبیقی هستند. از این رو در این پژوهش به بررسی اثر مجموع بارش‌های پنج روزه در پیش‌بینی دبی بیشینه روزانه سیلاب با استفاده از مدل‌های انفیس پرداخته شد. مدل مذکور با دو الگوریتم آموزشی پس انتشار و هیبرید آموزش دیده شد و سپس با استفاده از آزمون‌های آماری مختلف مورد بررسی قرار گرفت. نتایج، کارآمدی مدل انفیس به‌دست آمده را در بررسی ورودی بارش پنج روزه و خروجی دبی اوج سیل نشان داد. همچنین نتایج حاصل از روش هیبرید، عملکرد بهتری را نشان دادند. بهترین ضریب همبستگی برای مدل 5 روزه و به میزان 985/0 و ریشه میانگین مربعات خطا 162/0 در روش هیبرید بود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

توسعه مدل فازی- عصبی تطبیقی به منظور پیش بینی دبی بیشینه روزانه سیلاب با استفاده از بارش تراکمی پنج روزه

در فرایند بارش رواناب، عوامل بسیاری دخالت دارند که با عدم قطعیت همراه هستند. یکی از فاکتورهای بسیار مهم در این فرایند، رطوبت اشباع پیشین خاک است. یکی از روش هایی که به این پارامتر توجه دارد، روش ارائه شده توسط سازمان حفاظت خاک آمریکا به نام شماره منحنی است. در این روش، مجموع بارش های پنج روز پیش از رخداد دبی اوج سیل، به عنوان نماینده شرایط رطوبتی پیشین خاک در نظر گرفته می شود. با توجه به این که...

full text

تخمین هوشمند دبی روزانه با بهره گیری از سامانه استنباط فازی - عصبی تطبیقی

در سال های اخیر، استفاده از تئوری مجموعه های فازی جهت مدل سازی پدیده های هیدرولوژیکی که دارای پیچیدگی و عدم قطعیت بالایی هستند، مورد توجه محققین قرار گرفته است. به همین دلیل، در این پژوهش از مدلی مبتنی بر منطق فازی (سیستم استنتاج فازی - عصبی تطبیقی4) برای انجام فرآیند پیش بینی جریان استفاده شده است. در این تحقیق، از سه پارامتر بارندگی، دما و دبی روزانه حوضه آبریز لیقوان چای برای پیش بینی جریان ...

full text

تخمین دبی اوج سیلاب و حجم رواناب رگبار با استفاده از شبکه عصبی- فازی تطبیقی (مطالعه موردی: حوزه آبخیز کسیلیان)

     Prediction of flood peak discharge and runoff volume is one of the major challenges in the management of watersheds. The present study was carried out to estimate event flood peak discharge and runoff volume using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in Kasilian watershed, Iran. For this purpose, 15 rainfall characteristics were considered for 6...

full text

تخمین هوشمند دبی روزانه با بهره گیری از سامانه استنباط فازی - عصبی تطبیقی

در سال های اخیر، استفاده از تئوری مجموعه های فازی جهت مدل سازی پدیده های هیدرولوژیکی که دارای پیچیدگی و عدم قطعیت بالایی هستند، مورد توجه محققین قرار گرفته است. به همین دلیل، در این پژوهش از مدلی مبتنی بر منطق فازی (سیستم استنتاج فازی - عصبی تطبیقی4) برای انجام فرآیند پیش بینی جریان استفاده شده است. در این تحقیق، از سه پارامتر بارندگی، دما و دبی روزانه حوضه آبریز لیقوان چای برای پیش بینی جریان ...

full text

بازسازی دبی روزانه با استفاده از روش های شبکه عصبی و فازی- عصبی(مطالعه موردی: سرشاخه های حوزه آبخیز کارون)

برای برآورد دبی روزانه در مدل‏های هیدرولوژی نیاز به دبی‏های پیوسته در بازه زمانی روزانه هست. تعداد سال‏های آماری متفاوت، نواقص آماری و خطای اندازه‏گیری باعث ایجاد سری‏های زمانی با پایه زمانی غیرمشترک می‏گردد. بنابراین بازسازی داده‏های دبی روزانه از اهمیت ویژه‏ای برخوردار است. این تحقیق به‌منظور بازسازی دبی روزانه در یکی از سرشاخه‏های رودخانه کارون و در دو مرحله انجام گرفت. در هر دو مرحله تحقیق ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 25  issue 4

pages  88- 98

publication date 2014-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023